Eicosapentaenoic acid preserves diaphragm force generation following endotoxin administration

نویسندگان

  • Gerald S Supinski
  • Jonas Vanags
  • Leigh Ann Callahan
چکیده

INTRODUCTION Infections produce severe respiratory muscle weakness, which contributes to the development of respiratory failure. An effective, safe therapy to prevent respiratory muscle dysfunction in infected patients has not been defined. This study examined the effect of eicosapentaenoic acid (EPA), an immunomodulator that can be safely administered to patients, on diaphragm force generation following endotoxin administration. METHODS Rats were administered the following (n = 5/group): (a) saline, (b) endotoxin, 12 mg/kg IP, (c) endotoxin + EPA (1.0 g/kg/d), and (d) EPA alone. Diaphragms were removed and measurements made of the diaphragm force-frequency curve, calpain activation, caspase activation, and protein carbonyl levels. RESULTS Endotoxin elicited large reductions in diaphragm specific force generation (P < 0.001), and increased diaphragm caspase activation (P < 0.01), calpain activation (P < 0.001) and protein carbonyl levels (P < 0.01). EPA administration attenuated endotoxin-induced reductions in diaphragm specific force, with maximum specific force levels of 27 +/- 1, 14 +/- 1, 23 +/- 1, and 24 +/- 1 N/cm2, respectively, for control, endotoxin, endotoxin + EPA, and EPA treated groups (P < 0.001). EPA did not prevent endotoxin induced caspase activation or protein carbonyl formation but significantly reduced calpain activation (P < 0.02). CONCLUSIONS These data indicate that endotoxin-induced reductions in diaphragm specific force generation can be partially prevented by administration of EPA, a nontoxic biopharmaceutical that can be safely given to patients. We speculate that it may be possible to reduce infection-induced skeletal muscle weakness in critically ill patients by administration of EPA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel effect of eicosapentaenoic acid: improved diaphragm strength in endotoxemia

Respiratory muscle weakness is commonplace in critically ill patients, impairing the ability of those patients to breath, prolonging the need for ventilatory support, and increasing the likelihood of respiratory failure when that support is removed. Infections and endotoxemia reduce respiratory muscle strength, probably acting through several mechanisms. It is reported that the omega-3 fatty ac...

متن کامل

The extrinsic caspase pathway modulates endotoxin-induced diaphragm contractile dysfunction.

The mechanisms by which infections induce diaphragm dysfunction remain poorly understood. The purpose of this study was to determine which caspase pathways (i.e., the extrinsic, death receptor-linked caspase-8 pathway, and/or the intrinsic, mitochondrial-related caspase-9 pathway) are responsible for endotoxin-induced diaphragm contractile dysfunction. We determined 1) whether endotoxin adminis...

متن کامل

Apocynin improves diaphragmatic function after endotoxin administration.

Free radicals are known to play an important role in modulating the development of respiratory muscle dysfunction during sepsis. Moreover, neutrophil numbers increase in the diaphragm after endotoxin administration. Whether or not superoxide derived from infiltrating white blood cells contributes to muscle dysfunction during sepsis is, however, unknown. The purpose of the present study was to e...

متن کامل

Caspase activation contributes to endotoxin-induced diaphragm weakness.

Infections produce significant respiratory muscle weakness, but the mechanisms by which inflammation reduces muscle force remain incompletely understood. Recent work suggests that caspase 3 releases actin and myosin from the contractile protein lattice, so we postulated that infections may reduce skeletal muscle force by activating caspase 3. The present experiments were designed to test this h...

متن کامل

Effect of proteasome inhibitors on endotoxin-induced diaphragm dysfunction.

Infections produce severe respiratory muscle dysfunction. It is known that the proteasome proteolytic system is activated in skeletal muscle in sepsis, and it has been postulated that this degradative pathway is responsible for inducing skeletal muscle weakness and wasting. The objective of this study was to determine if administration of proteasomal inhibitors (MG132, epoxomicin, bortezomib) c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2010